Please check that this question paper	er contains9 questions and	2 printed pages within first ten minutes.
[Total No. of Questions: 09] Uni. Roll No	MORNING 2 & JUN 2022	[Total No. of Pages:]
	Program: B.Tech. (Batch 201)	8 onward)
	Semester:2 nd	
	Name of Subject:Mathematic	s-11
	Subject Code: BSC-104	
	Paper ID:15940	
Time Allowed: 03 Hours		Max. Marks: 60
NOTE:		
 Parts A and B are cor Part-C has Two Ques 	mpulsory stions Q8 and Q9. Both are co	empulsory, but with internal choice

Part - A

3) Any missing data may be assumed appropriately

[Marks: 02 each]

Q1.

- a) Define a periodic function. Also find the period of the function $f(x) = \cos \frac{x}{3} + 5 \sin \frac{x}{4}.$
- b) Find the points of inflexion for the curve $a^2y^2 = x^2(a^2 x^2)$.
- c) If $z = \frac{x^2 + y^2}{\sqrt{x + y}}$, find the value of $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$.
- d) Evaluate $\iint (x^2 + y^2) dx dy$ over the region in the positive quadrant for which $x + y \le 1$.
- e) Show that gradient field describing a motion is irrotational.
- f) Transform the integral to spherical polar form and hence evaluate $\iiint dxdy\,dz$ over the sphere $x^2+y^2+z^2=a^2$.

Part – B [Marks: 04 each]

- Q2. If $u = r^m$, where $r^2 = x^2 + y^2 + z^2$, find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2}$.
- Q3. Trace the curve $r=4 \sin \theta$ by discussing its features.
- Q4. Evaluate the integral $\int_0^4 \int_y^4 \frac{x}{x^2+y^2} dx dy$ by Changing the order of integration .
- Q5. Discuss the physical interpretation of curl of a vector point function.

MORNING

28 JUN 2022

- Q6. Calculate the angle between the normals to the surface $xy = z^2$ at the points (3,3,-3) and (4,1,2).
- Q7. Expand $f(x) = x \sin x$; $-\pi \le x \le \pi$ as a Fourier Series

Part - C

[Marks: 12 each]

Q8. Verify Green's theorem for $\oint_c (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where c is the boundary of the region defined by the lines x = 0, y = 0, x + y = 1.

OR

- a) Using triple integration find the volume enclosed between the cylinders $x^2 + y^2 = ax$ and $z^2 = ax$. (6)
- b) Using double integration find the area lying inside the circle $r = a \sin\theta$ and outside the cardioid $r = a(1 \cos\theta)$. (6)
- Q9. (a) Expand $f(x) = \sqrt{1 \cos\theta}$; $-\pi \le x \le \pi$ as a Fourier Series . (6)
 - (b) Find half range sine series for f(x) = 2x 1; 0 < x < 1. (6)

OR

- a) The dimensions of a cone are, radius = 4 cm, height = 6 cm. What is the error in its volume if the scale used in taking the measurements is short by 0.01 cm per cm?
- b) Use Lagrange's method, find the point upon the plane ax + by + cz = p at which the function $f = x^2 + y^2 + z^2$ has a minimum value, also find this minima of f.
